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1. Introduction

Orbifolding the SU(4) R-symmetry of N = 4 SYM allows one to break some or all of the

supersymmetry of that theory. One may then study the AdS-CFT conjecture in a context of

reduced or no supersymmetry [1 – 3]. In the case of completely broken supersymmetry there

is the possibility that the theories on one or both sides of the duality might be unstable.

For an orbifold with fixed points, both sides of the duality have been shown to suffer from

instabilities in the winding sector [4 – 7]. The gravitational instability corresponds to the

existence of closed string tachyons. In the case of freely acting orbifolds, on the other

hand, the twisted sector strings which are tachyonic in the case of orbifolds with fixed

points have lengths of order on AdS length scale and acquire a positive mass. It has been

argued, however, that a nonperturbative instability should still be expected [8, 4, 5].

Recently Horowitz, Orgera, and Polchinksi have described an instanton describing a

“bubble of nothing” type instability of a freely orbifoldedAdS5×S5/Zk [9]. Like the original

Kaluza-Klein bubble of nothing [10], these solutions describe the creation of a topologically

nontrivial spacetime from the vacuum. The bubble then expands outwards, consuming the

space. These recent solutions differ qualitatively from previous bubbles of nothing studied

in AdS. Most of these examples ([11]–[15]) involve modifying the conformal metric on the

boundary so that it becomes S1 × dS3 while the solutions of [9] involve identifications only

along the S5, not along the AdS5 portion of the space. The only other currently known

dynamical AdS bubbles [16] do not involve any identifications, although in that case it is

not entirely clear whether or not the solutions describe an instability.

The authors of [9] find this instability only when they impose antiperiodic boundary

conditions for fermions, as well as D-brane singularities in the most straightforward case,

so none of the presently known positive energy theorems apply. Any solutions in the class
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of [9] with the desired boundary conditions are massless; this is a necessary consequence of

their description as a decay of the vacuum. These solutions include large bubbles which ac-

celerate outward and hence include a substantial amount of energy in terms of gravitational

radiation, suggesting there exist bubbles with negative energy. It is also worth noting that

in the asymptotically flat Kaluza-Klein context, in addition to Witten’s massless bubble,

there are regular arbitrarily negative energy bubbles [17, 18]. With the above consider-

ations one suspects, as do the authors of [9], that spacetimes which are asymptotically

AdS5 × S5/Zk admit negative energy solutions.

We show here that there are regular (up to singularities due to smeared D3-branes)

bubbles of arbitrarily negative energy for these boundary conditions. To make this claim,

we must properly define energies of nonsupersymmetric solutions of warped product spaces

(in particular those asymptotic to AdS5 × S5/Zk) with a p-form flux. A Hamiltonian

definition is developed in section two. We also point out there that the asymptotic choice

of gauge has physical consequences. In particular, for spaces such as AdS5 × S5 with a

Freund-Rubin [19] compactification utilizing a self-dual five form, there is only a single

choice of gauge that yields a well defined Hamiltonian. Rather surprisingly, this choice

dictates the potential must be asymptotically time dependent, despite the fact that the

fields and metric are not.

With a proper definition of energy in hand, in the third section we consider a large

class of time symmetric initial data generalizing the form of solutions considered by [9].

The fourth section describes some particular negative energy solutions, and the fifth section

discusses the time evolution of this data. We point out that while bubbles such as ours and

those of [9] may become large, as long as the standard boundary conditions are preserved

they never reach infinity. We conclude with a discussion of some open problems for the

gravitational theory and with regards to the AdS-CFT conjecture.

2. Regarding energy

We will use the Hamiltonian to define the energy. There are, of course, many other possible

definitions of the energy (see, e.g., [20, 21]) but we take the perspective that any other

sensible definition must be equivalent to this one. Beginning with the action for a p-form

and scalar in D dimensions:

S = β

∫

dDx
√−g

(

R− 1

2
(∇φ)2 − e−αφ

2(p + 1)!
Hα1...αp+1H

α1...αp+1 − V (φ)

)

(2.1)

where H = dB is a (p + 1)-form field strength, φ is a scalar, α is the dilaton coupling, and

β is a normalization constant we choose to leave arbitrary. While we have only labeled a

single scalar and p-form, the generalization of the results of this section to multiple fields

is entirely straightforward. Our interest in the later sections of this paper is in solutions

where φ is the dilaton and may be consistently set to zero but the considerations in this

section are of somewhat broader interest and it will not cause us difficulty to include a

nonzero scalar.

Consider the standard Hamiltonian decomposition with the spacelike slice Σ with unit

timelike normal nµ and time evolution vector ξ. We will use latin indices to indicate when
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sums are only over directions in Σ (i.e. spatial indices). The lapse N is given by

N = −nµξ
µ (2.2)

while the shift vector Na is

Na = ha
bξ

b (2.3)

where hab = gab + nanb is the induced spatial metric on Σ.

We will denote the Lie derivative of a tensor in the ξ direction projected into the

surface Σ (the “time derivative”) by a dot:

Ḃa1...an = hb1
a1
. . . hbn

an
LξBb1...bn

(2.4)

The momentum canonically conjugate to the spatial metric hab is, as usual,

πab
G =

∂L
∂ḣab

= β
√
h(Kab − habK) (2.5)

where Kab is the extrinsic curvature and K = Kabhab. The momentum conjugate to the

scalar φ is

πφ =
∂L
∂φ̇

= β
√
hnµ∇µφ (2.6)

while the momentum conjugate to the p-form potential B is

π
a1...ap

B =
∂L

∂Ḃa1...ap

=
β
√
h

p!
e−αφnµH

µa1...ap (2.7)

We define the Hamiltonian density canonically

H = piq̇i − L (2.8)

where L is the Lagrangian density and pi and qi are respectively the time derivatives and

momentums of the metric and fields, namely (2.5)–(2.7). In the above definition we discard

any surface terms. We will then add appropriate surface terms to ensure the Hamiltonian

has a well defined variational principle. Alternatively, one could derive the same results

by beginning with an action with the surface terms necessary to make its variation well

defined and carrying these terms through the calculation.

The volume Hamiltonian defined by integrating (2.8) is

HV =

∫

Σ

(

ξµCµ + ξµ1Bµ1a2...apCa2...ap

)

(2.9)

where Cµ are the constraints from the Einstein equations and Ca2...ap the constraint from

the p-form. For the sake of compactness we have adopted the convention that when p = 1,

Ca2...a1 = C (i.e. a scalar). Explicitly,

C0 = −2
√
h(Gµν − 8πTµν)nµnν = −β

√
hR(d−1) +

1

β
√
h

(

πab
G π

G
ab +

π2
G

2 − d

)

+
π2

φ

2β
√
h

+
β
√
h

2
(Dφ)2 + β

√
hV (φ)

+
p!

2β
√
h
eαφπ2

B +
β
√
h

2(p+ 1)!
e−αφHa1...ap+1H

a1...ap+1 (2.10)
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Ca = −2
√
h(Gaµ−8πTaµ)nµ =−2

√
hDc

(
πG

c
a√
h

)

+πφDaφ+π
a1...ap

B Haa1...ap (2.11)

Ca2...ap = −p
√
hDa

(
π

aa2...ap

B√
h

)

(2.12)

In accordance with the above convention, in the case of p = 1 (2.12) should be read as

C = −
√
hDa

(
πa

B√
h

)

(2.13)

Note the “pure constraint” form of the volume Hamiltonian is no accident, but in fact is

generic to any theory with time reparametrization invariance. This follows from the fact

that the Hamiltonian generates time translations. Due to this form, HV will vanish if one

considers any solution satisfying the constraints.

We have, however, yet to add the surface terms to obtan a well defined variational

principle. When one varies (2.9) and then performs integrations by parts to produce the

equations of motion, a variety of surface terms are produced. We must then add terms to

cancel off these quantities. Specifically one must add

β

∫

dSa
[

NDb(δhab) −Db(N)δhab + hcd(−NDa(δhcd) +Da(N)δhcd

]

+

∫

dSa

[

2Nb
δπG

ab

√
h

+ 2N cπG
ab

√
h
δhbc −NaπG

bc

√
h
δhbc

]

+p

∫

dSaξ
µBµa2...apδ

(
πB

aa2...ap

√
h

)

−
∫

dSa

(

βNDaφ+Na πφ√
h

)

δφ

−
∫

dSa

(
βN

p!
e−αφHaa1...ap +

p+ 1√
h
N [aπB

a1...ap]

)

δBa1...ap (2.14)

The pure matter terms have previously been written down in [22] and the purely gravita-

tional terms have been previously found by Regge and Teitelboim [23].

Now we must find a series of finite surface terms to be added to the Hamiltonian

such that the variation yields (2.14). There does not seem to be a generic way to do this,

but rather one must find the terms appropriate on a case by case basis for the desired

asymptotics. Since the solutions we are interested in are non-rotating, for the sake of

simplicity we restrict ourselves to the case Na = 0. We wish to consider warped product

solutions with D = d+ q dimensions

ds2 = kij(y)dy
idyj + lab(x, y)dx

adxb (2.15)

where we impose the standard aymptotically AdS boundary conditions in the yi directions

(see e.g. [20])

kij = k
(0)
ij + δkij

(
l

r

)d−1

(2.16)

with k
(0)
ij the metric of global AdSd

k
(0)
ij dy

idyj = −
(
r2

l2
+ 1

)

dt2 +
dr2

r2

l2
+ 1

+ r2dΩd−2 (2.17)
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and

lab = l
(0)
ab + δlab

(
l

r

)d−1

(2.18)

where l
(0)
ab is the metric of a compact manifold Mq. Of particular interest is the case where

M is a q-sphere. To ensure that the gravitational surface terms in the Hamiltonian are

finite we require that as a function of r

δlab = O(1) (2.19)

In accordance with the standard AdS boundary conditions we also require

δktt = O
(
r2
)

δktr = O
(
r−1
)

δktθi
= O

(
r2
)

δkrr = O
(
r−2
)

δkrθi
= O

(
r−1
)

δkθiθj
= O

(
r2
)

(2.20)

or, at least for the diagonal components, δkij is of the same order as k
(0)
ij . We utilize the

convention in (2.19), (2.20) that the quantities are bounded above by the right hand side

and may well be smaller or zero in particular circumstances. These conditions then ensure

that the gravitational surface terms in the Hamiltonian (2.14) are finite and well defined.

Note all of the subsequent analysis of this section will go through just as well if the q-

dimensional manifold is absent. In particular, if the dimensional reduction to d dimensions

does not produce matter of types besides that in (2.1) the results will apply equally well.

The analysis will also go through for orbifolded AdSp×Mq provided the structure we have

assumed above is preserved and only the intervals of the various coordinates are affected.

The orbifold we will consider in the next section is precisely of this type.

The scalar term proportional to N will be finite if asymptotically

φ− φ0 ∼ 1

r(d−1)/2
(2.21)

and vanish if φ falls off any faster. Hence for scalars saturating the Breitenlohner-Freedman

bound [24] which satisfy the fast (i.e. non-logarithmic) falloff rate this term will be nonzero

and finite. For other scalars the term will vanish if the fast fall-off rates are required.1

In particular, in the case where one has a self-dual field H (and hence H2 = 0) and a

vanishing scalar potential the field equation for φ is

∇2φ+
αe−αφ

2(p + 1)!
H2 = ∇2φ = 0 (2.22)

1As has been pointed out in recent years, one may study scalars just above the BF bound with slower

falloff conditions provided one also weakens the above boundary conditions on the metric in such a way

that divergences between this term and the gravitational terms cancel ([25]–[31]). Such boundary conditions

appear to be perfectly sensible, although not the ones we wish to impose here.
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and so, presuming φ approaches the constant φ0 asymptotically, by the usual analysis

φ− φ0 ∼ 1

rd−1
(2.23)

and the scalar will not contribute to the Hamiltonian. Note it is also consistent in this case

to set φ = 0 and we will do so in the next section.

In terms of p-forms our primary interest is in the case where any electric field is of rank

d and extended only in the y-directions (i.e. Hty2...yd
) and any magnetic field is of rank q

and extended only in the x-directions. In particular, the Freund-Rubin ansatz [19] we will

be using later falls into this category. Due to the fact that the magnetic field is closed, it

is only a function of x, Hx1...xq(x), and hence the potential Bx1...xq−1 is independent of r

and equal to its asymptotic value. Since this is the same as the background value, there is

no magnetic contribution to the energy in these cases.

With the above boundary conditions then the desired term and the on shell value of

the Hamiltonian becomes

HS = β

∫

dSa
[

Nhbc (Dc(∆hab) −Da(∆hbc)) −Db(N)∆hab +Da(N)hbc∆hbc

]

−β
2

∫

dSaNφD
aφ+ (d− 1)

∫

dSaξ
µBµa2...ad−1

∆

(
πB

aa2...ad−1

√
h

)

(2.24)

where ∆hab = hab −h(0)
ab where h(0) is the background metric, Da is the covariant deriva-

tive with respect to the background metric, and indices are raised with the background

metric. Likewise, the remaining ∆ indicates a subtraction from the background value of

the indicated quantity. The background subtractions imply that the energy of an undis-

torted AdSp × Mq vanishes with this definition. Of course, any definition of energy will

have a zero-point ambiguity and this must be fixed either with comparison to a particu-

lar spacetime or renormalization prescription. With the given normalization, (2.24) is the

unique set of surface terms that make the Hamiltonian well defined since the variation of

the Hamiltonian is fixed.

We would now like to focus on the last electric term.

(d− 1)

∫

dSaξ
µBµa2...ad−1

∆

(
πB

aa2...ad−1

√
h

)

(2.25)

Note this contribution does not look gauge independent. In fact, it turns out there is only

one physically acceptable choice of gauge in this circumstance. We should emphasize here

one would have such a term in the AdS5 × S5 context regardless of whether one examines

the situation from a five or ten dimensional perspective. In particular the restriction

we discuss below is not related to the well known fact that one may not write down a

covariant lagrangian that ensures the self-duality of the field. We take the usual solution

to that problem and impose the self-duality by hand. Alternatively, one might perform the

dimensional reduction, but (2.25) will remain as above.

The momentum must satisfy the constraint

Dy1

(
π

y1...yd−1

B√
h

)

=
1√
h
∂y1

(
π

y1...yd−1

B

)
= 0 (2.26)

– 6 –



J
H
E
P
0
5
(
2
0
0
8
)
0
6
9

Then, recalling that in this circumstance there is only one nonzero component of the

momentum,

π
y1...yd−1

B = π
y1...yd−1

B (t, x) (2.27)

In fact π is time independent as well, a fact ensured by the scalar constraint considering

that the metric is asymptotically constant and the magnetic form H is closed (and hence

time independent). Then

π
y1...yd−1

B√
h

=
C1(x)√
h(0)

(

1 + O
(
l

r

)d−1
)

(2.28)

where h(0) is the determinant of the spatial asymptotic metric (i.e. that of k
(0)
ij at t = 0

and l(0)ab). Then

∆

(
πB

y1y2...yd−1

√
h

)

∼ r3−dr1−d (2.29)

where the first factor comes from
√
h(0) and the second from the leading order corrections

to the metric. Since the integration measure grows as rd−3, the term (2.25) will yield a

finite contribution if

ξµBµy2...yd−1
∼ rd−1 (2.30)

and vanishes if ξ ·B is any smaller.

The field strength corresponding to such momentum is

Htrθ1...θd−2
= C2

√

−k(0)

(

1 + O
(
l

r

)d−1
)

= ∂t(Brθ1...θd−2
) − ∂r(Btθ1...θd−2

) + Σθi
∂θ1(Btrθ2...θd−2

) (2.31)

where the last sum implicitly contains the appropriate signs for permutations and C2 is a

constant. By far the most obvious choice of gauge is that only Btθ1...θd−2
6= 0 and hence

Btθ1...θd−2
=

C2

1 − d
r
√

−k(0)
︸ ︷︷ ︸

∼rd−1

(

1 + O
(
l

r

)d−1
)

(2.32)

and so (2.25) is finite. Note that in this context ∆(π/
√
h) is not the variation of the

charge; the electric flux is fixed asymptotically while ∆(π/
√
h) describes the leading order

corrections to the flux. In fact, one might well worry it is not even gauge invariant, as it is

inversely proportional to the square root of a determinant. One can show this concern is

well justified as follows. By making the coordinate reparametrization

r = r̄

(

1 + a

(
l

r̄

)d−1
)

(2.33)

one changes the value of the coefficients of the leading order corrections to the metric

but leaves the form intact. The changes due to this reparametrization in terms subleading
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in (2.28) will not be large enough to change the surface term (2.25), but h(0) will be altered.

Specifically one finds

√

h(0) =
√

h̄(0)

(

1 − a

(
l

r̄

)d−1

+ O
(

r̄2−2d, r̄−d−1
)
)

(2.34)

where h̄(0) is the determinant of the asymptotic spatial metric in terms of r̄. Then ∆(π/
√
h)

is not invariant under this reparametrization and neither is the surface term (2.25), since

the remainder of the terms only are relevant at leading order. On the other hand, it

is straightforward to show the gravitational terms are invariant under this change. The

latter should not be surprising; the calculation is identical to the one one would do to

verify that the mass of a solution which is asymptotically AdSd (instead of AdSd × Mq)

is invariant under this change of coordinates. While it seems likely there is a generic

underlying explanation for this pathology, for the present we simply note its existence and

consider other possible gauge choices.

Since the field strength is proportional to the volume form on the sphere, if one made a

choice of gauge such that Btrθ1...θd−3
6= 0 one necessarily would have to define the potential

in patches. This follows simply because the volume form on the sphere is not exact. While

such a gauge choice can eliminate the surface term at infinity, it does so at the cost of

introducing integrals along the interface of the patches. For the sake of illustration, call

the potential in one patch B(1)
trθ1...θd−3

and in a second (there may be several such patches)

B(2)
trθ1...θd−3

. Each patch has its own set of surface terms to make the Hamiltonian well

defined in that patch. Note that two patches which touch have opposite pointing normals

(n̂(1) and n̂(2), respectively) and so combining these terms one produces an integral over

the interface of the two patches and the difference in the gauges:

(d− 1)

∫

1
n̂(1)

a ξµB(1)
µa2...ad−1

∆

(
πB

aa2...ad−1

√
h

)

+ (d− 1)

∫

2
n̂(2)

a ξµB(2)
µa2...ad−1

∆

(
πB

aa2...ad−1

√
h

)

= (d− 1)

∫

1
n̂(1)

a ξµ (B(1)
µa2...ad−1

−B(2)
µa2...ad−1

)∆

(
πB

aa2...ad−1

√
h

)

(2.35)

In addition to being inconvenient, this choice of gauge does not yield a finite Hamiltonian;

Btrθ1...θd−2
∼ rd−3 (2.36)

and the jump in gauge is of the same order. Then, since (2.35) includes an integral over r

it is logarithmically divergent.

The only remaining possible gauge choice is the time dependent gauge

Brθ1...θd−2
= C2(t− t0)

√

−k(0)

(

1 + O
(
l

r

)d−1
)

(2.37)

where t0 is an arbitrary but fixed constant. Note this makes the electric term in the

Hamiltonian vanish (2.25) and we are left with only the gravitational and dilatonic terms.
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More geometrically, one may demand that asymptotically

ξ ·B = 0 (2.38)

or

n ·B = 0 (2.39)

We have listed the right hand sides of (2.38) and (2.39) as zero, although we will not run

into any difficulty in the above case as long as they are not as large as rd−1. While we

are not aware of any problems caused by enforcing the stronger conditions, neither do we

have a generic argument that such difficulties can never occur. As we discuss below, in

other cases there is good reason to enforce (2.38) or (2.39) as stated. In the case of electric

fields of rank d and a shift with no component along the compact (e.g. S5) manifold these

two conditions (2.38) and (2.39) are equivalent; any contribution due to the shift will

vanish since all the angles in the space already appear contracted with π. As we discuss

later, however, one might hope to resolve this ambiguity by considering a more generic

situation. While it seems somewhat odd that even in a time independent background one

is forced to choose a time dependent gauge, as noted above all other choices lead to an

ill-defined Hamiltonian. It would be interesting to understand what, if any, restriction this

corresponds to in the gauge theory of the AdS-CFT correspondence.

For electric fields of lower rank (2.25) will not have the same difficulties as above but

it still may be finite. In particular, consider asymptotically AdSd spacetimes with only a

simple radial electric field πr(r). Then

∂rπ
r = 0 (2.40)

and the solution will have an electric charge

Q =
1

Ωd−2

∫

dSa
πa

√
h

(2.41)

Then

δ

(
πr

√
h

)

∼ δQ√
h
∼ δQ

rd−3
(2.42)

and

Hrt ∼
Q

rd−2
(2.43)

The gravitational surface terms in this case will be just as they were above (2.24) but the

electric term is now ∫

dSa ξ
µBµ

πa

√
h

(2.44)

If one takes a time independent gauge

Bt = ϕ0 + O
(

r3−d
)

(2.45)

unless the value of the potential at infinity (ϕ0) is set to zero, (2.44) will be finite and

nonzero. This in fact should not be any surprise; this term yields the electric work term
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ΦδQ in the context of the first law of black hole thermodynamics [22, 32]. Note changing

the value of ϕ0 is not just gauge but in fact would require doing work on the system. In

fact, if one is allowed to change ϕ0 at will the value of the Hamiltonian for any charged

system may be set to any desired value, positive or negative.

By using the BPS bound for a rotating supersymmetric solution with an electric field

with rank less than d one should be able to determine whether (2.38) or (2.39) is correct.

Unfortunately, the only suitable solutions we are aware of are rather complicated supersym-

metric black holes (see [33] for a recent review) where one needs to take into account not

only surface terms at infinity but also a substantial number of surface terms at the horizon.

This appears to be technically rather involved and we will postpone it for future work.

Before finishing, we should note it has been asserted in the literature [20] that under

“natural” boundary conditions a p-form field will not contribute to the Hamiltonian for

spaces that are asymptotically AdSd without any restriction on the gauge. However, one

can check that the boundary conditions imposed there imply a faster falloff than is physi-

cally required and in particular exclude any solutions with net global electric charge. Hence

the relevant terms in the Hamiltonian are ruled out by hand. Of course, once one imposes

the described gauge boundary conditions, the electric terms in the Hamiltonian (2.25)

and (2.44) will vanish and we agree with the final results of [20].

3. Initial data for AdS5 × S5/Zk

Let us now turn to orbifolded AdS5 × S5. In particular we would like to consider the

nonsupersymmetric orbifold with no fixed points described by [9]. In this example, the

orbifold acts by equal rotations of 2π/k in each of the three orthogonal planes of the S5.

This may be implemented by considering the S5 as a Hopf fibration of S1 over CP2; the

orbifold acts to reduce the length of the S1 cycle by a factor of k. For reasons described

in detail in [9], there will be no tachyons provided gsN ≫ k4 and k is odd. For k ≥ 5

the authors of [9] describe an instability while for k = 3 the orbifold turns out to be

supersymmetric and no such instability is found.

We wish to search for a far worse instability than that of [9]–namely the existence of

negative energy states. One expects the lowest energy configurations at a given moment

will be time symmetric initial data since in that case no energy is present in the form of

gravitational momentum. Further, a cross section of an instanton describing any decay of

the vacuum must correspond to such data. Thus we search here for suitable time symmetric

initial data. We may parametrize the S5 by the three complex coordinates (z1, z2, z3) which

satisfy ziz̄i = 1 and dΩ5
2 = dzidz̄i. These zi may be written as

z1 = ei(φ1+χ) cos θ

z2 = ei(φ2+χ) sin θ cosψ

z3 = eiχ sin θ sinψ (3.1)

The metric on CP 2 may be written in terms of four one forms

ds2CP2 = Σ4
a=1eaea (3.2)
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and then

dΩ5
2 = ds2CP 2 + e5

2 (3.3)

In terms of the coordinates of (3.1), the one forms ea are

e1 = dθ

e2 = sin θ dψ

e3 = sin θ cos θ (dφ1 − cos2 ψ dφ2)

e4 = sin θ sinψ cosψ dφ2

e5 = dχ+ cos2 θ dφ1 + sin2 θ cos2 ψ dφ2 (3.4)

For the original S5 the period of χ is 2π. In the Zk orbifold the form of (3.3) is not altered

but χ has period 2π/k.

We wish to consider bubbles produced when the χ cycle pinches off. The simplest such

initial data is

ds2 =
dr2

W (r)
+ f(r)dΩ3 + g(r) ds2CP2 + h(r) e5

2 (3.5)

Of course, one of these functions of r is pure gauge, but it turns out to be convenient to

leave the gauge unfixed for the present. In terms of the coordinates of (3.1), (3.5) is

ds2 =
dr2

W (r)
+ f(r)dΩ3 + g(r)

(

dθ2 + sin2 θdψ2
)

+h(r)
(

dχ2 + 2cos2 θ dχdφ1 + 2 sin2 θ cos2 ψ dχdφ2

)

+ cos2 θ
(

cos2 θ h(r) + sin2 θ g(r)
)

dφ2
1

+2 sin2 θ cos2 θ cos2 ψ
(

h(r) − g(r)
)

dφ1dφ2

+ sin2 θ cos2 ψ
(

h(r) sin2 θ cos2 ψ + g(r)(cos2 θ cos2 ψ + sin2 ψ)
)

dφ2
2 (3.6)

In particular a t = 0 slice of the solutions of [9] falls into this class.

The only matter for the solutions we wish to consider is a self-dual five form

F5 = ξ(r)(ǫ5 + ⋆ǫ5) (3.7)

where ǫ5 is the volume form on the S5. The requirement that the magnetic field (or

equivalently F ) is a closed form implies that

ξ(r) =
C3

g2(r)
√

h(r)
(3.8)

for a constant C3. Matching the value of C3 to its asymptotic value determines

C3 =
√

8R4 (3.9)

where R is the asymptotic radius of the S5 (i.e. g(∞) = h(∞) = R2). Given (3.8) the

gauge constraint is satisfied and one only needs consider the scalar constraint

(9)R =
1

2

(
E2

4!
+
F̄ 2

5!

)

(3.10)
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where (9)R is the scalar curvature constructed from the initial data, F̄ is the form field

projected into the initial data surface and

Ea1a2a3a4 = nµFµa1a2a3a4 (3.11)

with nµ is a unit timelike vector orthogonal to the initial data surface. Then the scalar

constraint becomes
(9)R =

C2
3

g4(r)h(r)
(3.12)

Inserting the given form of the metric then the constraint (3.10) yields

a0(r)W
′(r) + a1(r)W (r) = a2(r) (3.13)

where

a0(r) =
3f ′(r)

2f(r)
+

2g′(r)

g(r)
+
h′(r)

2h(r)

a1(r) =
6f ′(r)g′(r)

f(r)g(r)
+
g′(r)2

g(r)2
+

3f ′(r)h′(r)

2f(r)h(r)
+

2g′(r)h′(r)

g(r)h(r)
− h′(r)2

2h(r)2

+
3f ′′(r)

f(r)
+

4g′′(r)

g(r)
+
h′′(r)

h(r)

= 2a′0(r) + a0(r)
h′(r)

h(r)
+ a3(r) (3.14)

where

a3(r) = 3

(
g′(r)

g(r)
+
f ′(r)

f(r)

)2

+ 2

(
g′(r)

g(r)

)2

(3.15)

and

a2(r) =
6

f(r)
+

24

g(r)
− 4h(r)

g2(r)
− C2

3

g4(r)h(r)
(3.16)

One may then choose f(r), g(r), and h(r) arbitrarily and the constraint (3.13) is solved by

taking

W (r) =
e
−

R r

r0
du

a3(u)
a0(u)

a2
0(r)h(r)

[

C4 +

∫ r

r0

ds a0(s)h(s)a2(s) e
R s

r0
dt

a3(t)
a0(t)

]

(3.17)

The constant C4 will be used below to ensure the absence of a conical singularity.

We would like to consider bubble solutions of size r0 (i.e. h(r0) = 0). There are

no entirely regular solutions but there are solutions, like those in [9], where the metric

approaches that of a stack of D3 branes wrapped around the S3 of the AdS5 space and

smeared over the CP2.
2 Since this leaves only two directions orthogonal to the branes, the

appropriate harmonic function is a logarithm. Then if one defines

γ(r) =

√

− log
( r

r0
− 1
)

(3.18)

2An unsmeared stack of D3 branes would not be singular but the smeared stack is. This may be seen

by noting via (3.12) the fact that the scalar curvature diverges at the surface of the bubble (where h(r)

vanishes).
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we seek a solution such that for r ∼ r0

f ∼ f0

γ
, g ∼ g0γ, h ∼ h0(r − r0)γ (3.19)

and

W ∼ w0
(r − r0)

γ
(3.20)

for some constants f0, g0, h0 and w0. Once we demand the above behavior for the functions

f , g, and h the form of w follows from the constraint (3.17). To see this, if one takes the

prescribed form for f , g, and h, for r ∼ r0

a3

a0
∼ 1

γ4(r − r0)
(3.21)

and so ∫ s

r0

du
a3(u)

a0(u)
∼ 1

γ2(s)
(3.22)

Further

a0a2h ∼ −4R8

g4
0

1

γ4(r − r0)
(3.23)

and thus ∫ r

r0

ds a0(s)h(s)a2(s) e
R s

r0
du

a3(u)
a0(u) ∼ −4R8

g4
0

1

γ2(r)
(3.24)

Hence we are justified in taking r0 in (3.17) as the bubble size (in contrast to the situation

if, for example, the integral of a3/a0 or of a0a2h diverged as r ∼ r0). Then one finds W

has the desired form with

w0 =
4C4

h0
(3.25)

There will be no conical singularity provided one takes

C4 = k2 (3.26)

We are interested in solutions which are asymptotically AdS5 × S5/Zk. It is straight-

forward using (3.17) to check that provided that f(r) satisfies the usual asymptotically

AdS requirement, namely

f(r) = r2
(

1 + δf
l4

r4
+ O(r−4−ǫ)

)

(3.27)

for constant δf and positive ǫ, and g(r) and h(r) fall off quickly enough to make the

Hamiltonian well defined

g(r) = R2

(

1 + δg
l4

r4
+ O

(
r−4−ǫ

)
)

(3.28)

and

h(r) = R2

(

1 + δh
l4

r4
+ O

(
r−4−ǫ

)
)

(3.29)
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where δg and δh are likewise suitable constants that W (r) will satisfy the usual asymptot-

ically AdS requirement, namely

W (r) =
r2

l2
+ 1 − δrr

l2

r2
+ O(r−2−ǫ) (3.30)

for some constant δrr. Using the definition of mass developed in the previous section (and

taking the conventional normalization β = 1/16πGD) these solutions will have energy

M =
R7

16πG10
(3 δrr + 12 δf + 20δg + 5 δh) × Ω3 ×

Ω5

k
(3.31)

4. Negative energy solutions

We now wish to see if there are any negative energy solutions of the constraint. Unfortu-

nately, choosing any f, g, and h such that W may be written explicitly seems quite difficult

for functions having the required behavior near the bubble (3.19). However, one may find

simple f, g, and h such that the relevant integrals for W may be found in certain regions.

We may then patch together such solutions in order to find a sufficently explicit form of

W . Note that in terms of finding the asymptotic value of W , it will only matter if the

resultant solution is C0; the integrals in (3.17) only involve first derivatives and so any

smoothness beyond continuity will not make any contribution. To be precise, if one intro-

duces smoothing over some small region δ, that smoothing will make an O(δ) contribution

to the energy. However, to remove any doubt from the most careful reader’s mind we will

only consider initial data that is C2; one may, as noted above, smooth this to any desired

degree at an arbitrarily small cost in mass. Finally, note via (3.17) if f, g, and h are CN

then W is CN−1.

The simplest possible case is that in which the functions in the brane region match

smoothly onto the asymptotic values, i.e.

g(r) = h(r) = R2 (4.1)

and

f(r) = r2 (4.2)

where R is the asymptotic value of the radius of the S5. Hence consider for r0 ≤ r ≤ r1

f =
r21γ(r1)

γ(r)
, g =

R2γ(r)

γ(r1)
, h =

R2γ(r)

γ(r1)

r − r0
r1 − r0

(4.3)

and for r ≥ r2 f, g, and h take their asymptotic values (i.e. (4.1)–(4.2)). One may then

patch these functions together in a C3 fashion, that is for r1 < r < r2 (where r2/r1−1 ≪ 1)

f(r) = r2(1 + Σ7
i=4fi(r − r2)

i), g(r) = R2(1 + Σ7
i=4gi(r − r2)

i) (4.4)

and

h(r) = R2(1 + Σ7
i=4hi(r − r2)

i) (4.5)
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where the constants (fi, gi, hi) are determined by the matching conditions. It is straight-

forward to show that

fi = O((r2 − r1)
−i+1) (4.6)

and analogous statements for gi and hi hold, so for r1 < r < r2, f ≈ r2, g ≈ R2, and

h ≈ R2 while the first derivatives are of order r1 and R2/r1 respectively. Then, provided

no derivatives become large or a0 becomes small, the integrals in (3.17) in the matching

region make only an O(r2/r1 − 1) contribution to the mass. This contribution may then

be made as small as desired. We will show below that the above mentioned restrictions

turn out to be easy to satisfy. As r2 approaches r1 one will find curvatures of order

r−1
1 (r2−r1)−1, but as long as r1 and r2 are large compared to the Planck scale the classical

analysis will still be reliable. It turns out, as shown in detail below, that the solutions with

large negative mass occur when r1 becomes large, so for the most relevant and dangerous

states the curvature in the matching region becomes parametrically small compared to the

Planck scale.

Note that r1/r0 may not be taken to be arbitrarily large, since the reality of γ(r)

implies r1/r0 < 2. In fact, the requirement that we have a regular solution imposes a

stronger constraint. For r0 < r < r1

a0(r) =
1

2(r − r0)

(

1 +
1

log
(

r
r0

− 1
)

)

(4.7)

and one must require this remains positive (otherwise W (r) would diverge, at least gener-

ically, when a0 vanishes — see (3.17)) and hence that

1 <
r1
r0
< 1 +

1

e
≈ 1.368 (4.8)

As it turns out, the interesting case for this class of examples falls well within this restric-

tion.

For r0 < r < r1 one finds

W (r) =
4(r1 − r0)γ(r1)

R2

(r − r0) γ(r)
(

− log
(

r
r0

− 1
)

− 1
)

[

k2 +
4 log2

(
r1
r0

− 1
)

log
(

r
r0

− 1
) +

(r − r0)

(r1 − r0)

(

12 − (r − r0)

(r1 − r0)

)

+
3R2

r12γ2(r1)

(r − r0)

(r1 − r0)

(

1 − log

(
r

r0
− 1

))]

(4.9)

Then provided (4.8) is enforced W (r) will be regular in this range. We also must ensure

that W (r) never goes through a zero in this region. For small bubbles this is manifest

while for large bubbles there is an additional restriction. One simple sufficient, but not

necessary, criterion is that

k2 + 4 log

(
r1
r0

− 1

)

> 0 (4.10)
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Combining this with (4.8) implies

1 + e−
k2

4 <
r1
r0
< 1 +

1

e
(4.11)

It turns out this is sufficient for our purposes.

For the matching region the form of W (r) apparently cannot be obtained explicitly.

In the limit that r2 → r1, provided a0 does not become very small and R/r1 is bounded,

the integral contributions to W will make a small change to its value at r = r1. In this

regime h is approximately constant, so the only factor that can significantly change W is

a0. Note that a0 is not necessarily approximately constant in the matching region. There

are even values of the parameters where it goes through a zero. The minimum restriction

that we must make is that a0, as computed from (4.4) and (4.5), is positive definite when

r2/r1 − 1 becomes arbitrarily small. This is equivalent to the statement that

1.047 /
r1
r0

/ 1.367 (4.12)

independent of k. Under the modest additional restriction

1.050 /
r1
r0

/ 1.303 (4.13)

one finds a0 is of order one, precisely

1

4
/ a0 / 7 (4.14)

for

1 /
r2
r1

/ 1.1 (4.15)

If k > 3.50 then both (4.12) and (4.13) are stronger than (4.11). It is worth noting that the

restrictions (4.12) and (4.13) are a result of the simple matching functions we have chosen

((4.4) and (4.5)) rather than anything fundamental. At the cost of more complicated

matching functions the restrictions of (4.12) and (4.13) could be eliminated, but we will

be able to find plenty of solutions within their bounds. Henceforth, we will impose (4.13)

and (4.11), as well as assuming r2/r1 − 1 ≪ r1/R.
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For r > r2 one finds

W (r) =
r42

9R2r2
1 + log( r1

r0
− 1)

log( r1
r0

− 1)
e
−

R r2
r1

du
a3(u)
a0(u)

︸ ︷︷ ︸

I0
[

k2 + 11 + 4 log

(
r1
r0

− 1

)

+
3R2

r21

(

1 − 1

log( r1
r0

− 1)

)

+
log( r1

r0
− 1)

1 + log( r1
r0

− 1)

[ ∫ r2

r1

ds a0(s)a2(s)h(s)e
R s

r1
dt

a3(t)

a0(t)

︸ ︷︷ ︸

I1

+9
R2

r42
e

R r2
r1

dt
a3(t)
a0(t)

(

r2
(

1 +
r2

R2

)

− r22

(

1 +
r22
R2

))]
]

=
r2

R2
+ 1 − r21

3r2

(

2 +
1

log2( r1
r0

− 1)
+ 3

r21
R2

+ O
(
r2
r1

− 1

))

(4.16)

+
r41

9R2r2

(

1 +
1

log( r1
r0

− 1)

)[

k2 + 11 + 4 log(
r1
r0

− 1) + O
(
r2
r1

− 1

)]

where we have noted that both I0 and I1 are of order r2/r1 − 1 since they involve integrals

of bounded functions over a vanishingly small range. For small bubbles (r1/R ≪ 1) the

mass is given by

M =
Ω3Ω5R

7r1
2

16πk G10

(

2 +
1

log2( r1
r0

− 1)

)(

1 + O
(
r2
r1

− 1,
r21
R2

))

(4.17)

and so is positive definite, as one might well expect. On the other hand for large bubbles

(r1/R ≫ 1)

M =
Ω3Ω5R

5r41
16πk G10

M0

(

1 + O
(
r2
r1

− 1,
R2

r21

))

(4.18)

where

M0 = 3 − 1

3

(

1 +
1

log( r1
r0

− 1)

)[

k2 + 11 + 4 log

(
r1
r0

− 1

)]

(4.19)

M0 is positive if k ≤ 3, but if k ≥ 4 there is a region where it becomes negative. To be

precise, M0 is negative if

y1 <
r1
r0
< y2 (4.20)

where

y1 = 1 + e
1
8

(

−k2−6−
√

k4−4k2−140

)

(4.21)

and

y2 = 1 + e
1
8

(

−k2−6+
√

k4−4k2−140

)

(4.22)

In particular for k = 4, if

1.026 /
r1
r0

/ 1.157 (4.23)
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Figure 1: M0 for k = 4

then M0 will be negative, as shown in figure 1.

M0 is qualitatively the same for any larger k. As k becomes larger, y1 becomes smaller

and approaches 1. For k ≫ 1 one finds

y1 ≈ 1 + e−
k2

4 (4.24)

Meanwhile, as k increases, so does y2. For k ≫ 1,

y2 ≈ 1 + e−1− 9
k2 (4.25)

The minimum value of M0 occurs at

r1
r0

= 1 + e−
√

11+k2

2 (4.26)

with value

M0min =
−k2 + 4

√
k2 + 11 − 6

3
(4.27)

It is also worth noting if we choose any fixed r1/r0 such that y1 < r1/r0 < y2 at large k

the mass for this family of solutions becomes large and negative

M = −kr
4
1

3

(

1 +
1

log( r1
r0

− 1)

)

Ω3Ω5R
5

16πG10
M0

(

1 + O
(
r2
r1

− 1,
R2

r21
, k−2

))

(4.28)

Some of the above solutions correspond to solutions which are singular in the interior

as they violate the bound (4.12). If we impose (4.13), however, all the solutions in the

interior will be regular (up to D-brane singularities) and the approximations under good

control. Then combining (4.13) and (4.20) for k ≦ 7 we will have regular negative mass

solutions if

1.050 /
r1
r0
< y2 (4.29)

while for k ≥ 8 the limits of (4.13) are stronger than those of (4.20) and so we have good

negative mass solutions if

1.050 /
r1
r0

/ 1.303 (4.30)
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For k = 5 the value of r1/r0 which minimizes M0 (4.26) is just allowed by (4.29), although

for k ≥ 6 the mass will be minimized for r1/r0 at the lower bounds of (4.29) and (4.30).

Note if we take any fixed r1/r0 in the range of (4.29) or (4.30), depending on the value of

k, we obtain a regular solution whose negative mass scales as the area of the bubble (r0
4)

and may be made arbitrarily negative.

There is nothing particularly special about the precise form of the family of initial data

described above and it turns out there are a variety of examples with similar behavior.

Consider, for example, matching f and g as above but allowing a more generic form for h;

for r0 ≤ r ≤ r1

h = h0(r − r0)γ (4.31)

and then matching h onto some desired function for r > r1. If one matches h onto a function

which rapidly goes from some h0 to the asymptotic value or matches (4.31) onto some simple

polynomials (R2(1− r40/r
4) and R2(1− r80/r

8) to be precise) one finds qualitatively similar

behavior to that above. In fact, we have examined a variety of other possible initial data

and it is reasonably clear that any initial data will have such behavior. That is, for k ≤ 3

any regular initial data has positive mass but if k ≥ 4 there are solutions with negative

energy proportional to the area of the bubble and, with the possible exception of k, no

large numbers are produced. Of course, this is what one naively expects.

5. Dynamics

It is straightforward to check that none of the bubbles we have considered are static. Despite

looking, we have not found any full spacetime solutions with the appropriate boundary

conditions aside from the class explored by [9]. Hence the detailed description of the

classical evolution of these states must apparently be addressed numerically. We may,

however, make some qualitative observations about the possible dynamics of any bubbles

in spacetimes with the desired asymptotics.

Since we have seen a variety of bubbles whose energy becomes more negative as they

become larger, dynamically we expect the bubbles in this initial data to tend to expand.

One might have thought the bubbles would expand at nearly the speed of light and could

get to timelike infinity.3 However, gravitational radiation and the reflecting boundary

conditions we wish to impose on AdS-CFT provide a limit to this expansion.

For any expanding bubble that is regular in any sense, there will be some time-

dependent region outside the bubble which will consist of small deviations from the back-

ground spacetime and which we may interpret as gravitational radiation. If a bubble never

stopped expanding, this shell of radiation would bounce back and forth between the bubble

and the boundary and becoming increasingly blueshifted as it did so. Hence, any small

amount of radiation would ultimately be blueshifted to the point where the amount of

energy in gravitational radiation is unboundedly large. In physical terms, there is the de-

velopment of a radiation pressure which acts to confine the bubble. This pressure becomes

3By timelike infinity we mean the timelike boundary of AdS. The reader is free to read “null infinity” if

he or she prefers.
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arbitrarily strong as a bubble expands to larger and larger radii. In other words, as usual,

AdS is acting like a box which confines excitations to its interior.

To thoroughly explore this possibility, however, let us consider whether there might

be bubbles whose negative energy grows sufficiently quickly to overwhelm the energy in

radiation. There are only two ways to achieve such a result — the shell of radiation must

become thinner and thinner as the bubble expands out or the bubble’s energy must grow

increasingly negative at least as fast as the energy in the radiation shell increases. Let us

consider the latter first. In this case, the amount of energy in gravitational radiation will

grow at least as fast as a blueshift factor times r0
4, recalling that volumes grow like areas

at large distance in AdS. Despite a reasonably thorough search, we have not found any

bubbles whose mass grows much faster than their area. Even if they do exist, it is difficult

to believe the large number compensating for the blueshift factor would not make the

curvature of the bubble correspondingly large and hence produce Planck scale curvatures

at some point. Similarly, in the first scenario at sufficiently large radius the shrinking shell

would become of the Planck thickness and the semiclassical approximation would fail. In

either one of the above scenarios, the frequency of the gravitational radiation grows as the

bubble expands and before the bubble could get to infinity one would encounter Planckian

frequencies. Then, in any case, no classical analysis can reliably predict the expansion of

a bubble to infinity.

Aside from the above argument, if a bubble ever did get to timelike infinity it would

violate the conventional boundary conditions one imposes on AdSp × Mq. Usually one

fixes the asymptotic metric, i.e. (2.16) and (2.18). But if the bubble gets to infinity, the

asymptotic metric will be changed. This is simply a matter of definition; if the asymptotic

metric is not changed the bubble does not get to infinity. Note further the presence of

a bubble is signaled by a pinching off of a cycle in the compact manifold (in the most

interesting case a q-sphere) but there is no such cycle in the asymptotic metric we are

fixing. Even if one defines the asymptotic metric in the AdS directions only up to a

conformal factor (see, e.g., [34, 20] and references therein) the form of the metric in the

remaining compact directions still keeps the bubble from getting out to infinity. In other

words, any bubble trying to get out to infinity will “bounce off”.

It is also worth noting that the bubbles we have discussed include D3-branes and if a

bubble got to infinity it would have performed the rather remarkable task of transporting

positive rest mass to infinity, perhaps even in finite time. Even worse, if the bubble hits

the boundary one would be forced to conclude matter and charge are flowing through

it, violating the reflecting boundary conditions we wish to impose. Given the above, we

must reluctantly conclude that the authors of [9] are in fact studying AdS-CFT with

unconventional boundary conditions. The ansatz used there implies the bubbles would get

to infinity in finite global time and rather dramatically violate the boundary conditions at

that time. We also must admit our suspicion that the approximations in the analysis of [9]

must miss some effects of gravitational radiation, as argued above.

While the above argument tells us that bubbles will not get to infinity, it does not tell

us what will happen provided we enforce the standard reflecting boundary conditions. The

most likely scenario appears to be that a bubble will classically expand outwards for a time
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but gravitational radiation eventually halts this expansion and the bubble becomes quasi-

static. While the bubble might be approximately stationary, the spacetime will almost

certainly not be due to gravitational radiation.

Alternatively, a bubble might reach a maximum size and then begin to collapse again.

It seems unlikely that such a collapse will proceed to the formation of a singularity. In

addition to violating cosmic censorship in a rather extreme way, the solutions have negative

mass and negative masses tend to repel each other. One would also expect that if the

bubbles became very small their behavior should be qualitatively similar to that of the

asymptotically flat Kaluza-Klein negative mass bubbles. In that case, numerical study

of collapsing negative mass bubbles has always shown the collapse halts after a time and

the bubbles begin expanding [35]. In our case, bubbles might well settle down to an

approximately static state (plus radiation) after a few oscillations or continue to oscillate

indefinitely. We also mention for completeness the possibility that classical evolution could

produce Planck scale curvatures and hence invalidate the semiclassical approximation, as

above, although we know of no reason why such outcomes should be expected.

6. Discussion

We have shown that supergravity admits solutions which are asymptotically AdS5×S5/Zk

with arbitrarily negative energy for k ≥ 4. These solutions describe bubbles that are regular

up to curvature singularities due to smeared D-3 branes. Since these solutions should be

perfectly good in string theory, the AdS-CFT correspondence, at least as usually stated,

must include them. As we have argued, such bubbles may never expand to infinity; indeed

there is good reason to believe there is an upper limit to the amount any particular bubble

may expand. This leaves, however, several possibilities for the “end state” of the classical

evolution of a bubble and it remains an open problem to determine which are realized.

We expect that quantum mechanically these negative energy bubbles will be nucleated

rapidly along with enough matter, presumably either radiation or black holes, to ensure

that energy is conserved. One would like to provide definitive evidence for or against

this proposition and to bring some qualitative measure to what “rapid” means, presuming

the word is appropriate. Note this rate is important for determining the ultimate fate

of the bulk spacetime. While the spacetime is, it appears, entirely unstable, any single

bubble will only remove a finite volume of AdS. Unlike the situation of [9] where one

relaxes the boundary conditions to the point where a single bubble can consume the entire

space, the only way the entire space could be removed in any finite time (for the usual

boundary conditions) is for the bubble production rate to diverge. This is not necessarily

inconceivable, for one might conjecture the production rate is roughly democratically spread

over the uncountably many negative energy bubbles.

The entire consumption of the spacetime would also require that the nucleation effect is

not significantly damped as one goes to larger and larger radii. In most circumstances, and

as we have seen above, AdS tends to confine nontrivial states to its interior. On the other

hand, one might argue that the states with larger and larger bubbles, and the subsequently

large number of matter degrees of freedom, should be favored entropically and quantum
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mechanically. If the production rate did diverge throughout AdS, it would mean that there

is no region in which the bulk spacetime is semiclassical and in particular would require

some definition beyond the usual one of asymptotically AdSp × Sq boundary conditions.

Alternatively, bubbles might be nucleated throughout AdS but at a finite rate so that

any given region of the spacetime will eventually be consumed by a bubble but there will

always be regions of spacetime remaining. The nucleation effect also might be substantially

confined to the interior of AdS: quickly eliminating regions smaller than an AdS scale but

leaving the asymptotics intact. At the moment we do not have tools to decide among these

possibilities.

Given the above state of affairs for the bulk, one would like to understand the im-

plications for AdS-CFT. The status of the orbifolded gauge theory at strong coupling is

largely an open problem. The Hamiltonian of the original N = 4 SYM theory is bounded

below as a result of supersymmetry but the orbifold we have chosen eliminates this simple

argument. One might have been inclined to view the orbifold on the gauge theory as a

rather mild operation that should not make the theory unstable. There would seem to

be significant tension between such a view and the AdS-CFT correspondence. Besides the

correspondence, there do not seem to be any tools at hand to study the strongly coupled

theory or even to determine whether the Hamiltonian is bounded from below.

The orbifolded gauge theory can and has been studied at weak t’Hooft coupling [6].

It has some unusual features, perhaps most notably that the couplings of twisted sector

operators run and break conformal invariance. The theory requires an ultraviolet cutoff for

these couplings, although whether this is a fundamental problem or, like the same feature

in λφ4, indicates the emergence of new phenomena at a given energy scale is not yet clear.

However, there are no tools like supersymmetry or large conserved charges available to

allow us to continue the results from weak to strong coupling. In fact, the AdS-CFT

correspondence (presuming the spacetime is sufficiently stable that a semiclassical region

exists) indicates the breaking of conformal invariance in the twisted sectors disappears at

large t’Hooft coupling; in particular the twisted-trace two-point function is conformal [4].

So in this sense at least the strongly coupled theory seems to be better behaved. On

the other hand, there are several examples of nonsupersymmetric field theories that are

believed to make sense at weak, but not strong, coupling [5, 36].

Given the existence of negative energy states on the gravitational side, there seem to be

three possibilities for the status of AdS-CFT in this context: the field theory is well defined

and stable but the correspondence fails in this circumstance, the correspondence holds and

the field theory is unstable, or the correspondence is valid and the theory somehow stable

despite the fact the Hamiltonian is unbounded from below. The last seems difficult to

believe, especially in a theory at strong coupling, and the apparent instability of the bulk.

However, we are not aware of a way to definitively rule out this possibility. Note that if

the field theory is unstable, one might hope to describe the decay of a state with given

energy. We have described a variety of possible decay mechanisms in the bulk — if AdS-

CFT continues to hold in this situation the description of the decay must match that of

the gauge theory. On the other hand, if both sides are hopelessly pathological it becomes

increasingly important to understand why this apparently mild orbifolding is so dangerous
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and the limits of modifying the AdS-CFT correspondence.

Acknowledgments

We would like to thank R. Myers, F. Cachazo and A. Buchel for comments and G. T.

Horowitz, J. Polchinski, and D. Marolf for significant correspondence. This work was sup-

ported by the Natural Sciences and Engineering Research Council of Canada and completed

in part at the Perimeter Institute, for whose hospitality we express our appreciation.

References

[1] S. Kachru and E. Silverstein, 4D conformal theories and strings on orbifolds, Phys. Rev. Lett.

80 (1998) 4855 [hep-th/9802183].

[2] A.E. Lawrence, N. Nekrasov and C. Vafa, On conformal field theories in four dimensions,

Nucl. Phys. B 533 (1998) 199 [hep-th/9803015].

[3] Y. Oz and J. Terning, Orbifolds of AdS5 × S5 and 4D conformal field theories, Nucl. Phys. B

532 (1998) 163 [hep-th/9803167].

[4] A. Adams and E. Silverstein, Closed string tachyons, AdS/CFT and large-N QCD, Phys.

Rev. D 64 (2001) 086001 [hep-th/0103220].

[5] A. Adams, J. Polchinski and E. Silverstein, Don’t panic! Closed string tachyons in ALE

space-times, JHEP 10 (2001) 029 [hep-th/0108075].

[6] A. Dymarsky, I.R. Klebanov and R. Roiban, Perturbative search for fixed lines in large-N

gauge theories, JHEP 08 (2005) 011 [hep-th/0505099]; Perturbative gauge theory and closed

string tachyons, JHEP 11 (2005) 038 [hep-th/0509132].

[7] A. Armoni, E. Lopez and A.M. Uranga, Closed strings tachyons and non-commutative

instabilities, JHEP 02 (2003) 020 [hep-th/0301099].

[8] M. Fabinger and P. Horava, Casimir effect betwen world-branes in heterotic M-theory, Nucl.

Phys. B 580 (2000) 243 [hep-th/0002073].

[9] G.T. Horowitz, J. Orgera and J. Polchinski, Nonperturbative instability of AdS5 × S5/Zk,

Phys. Rev. D 77 (2008) 024004 [arXiv:0709.4262].

[10] E. Witten, Instability of the Kaluza-Klein vacuum, Nucl. Phys. B 195 (1982) 481.

[11] D. Birmingham and M. Rinaldi, Bubbles in anti-de Sitter space, Phys. Lett. B 544 (2002)

316 [hep-th/0205246].

[12] V. Balasubramanian and S.F. Ross, The dual of nothing, Phys. Rev. D 66 (2002) 086002

[hep-th/0205290].

[13] R.-G. Cai, Constant curvature black hole and dual field theory, Phys. Lett. B 544 (2002) 176

[hep-th/0206223].

[14] V. Balasubramanian, K. Larjo and J. Simon, Much ado about nothing, Class. and Quant.

Grav. 22 (2005) 4149 [hep-th/0502111].

[15] J. He and M. Rozali, On bubbles of nothing in AdS/CFT, hep-th/0703220.

– 23 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C80%2C4855
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C80%2C4855
http://arxiv.org/abs/hep-th/9802183
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB533%2C199
http://arxiv.org/abs/hep-th/9803015
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB532%2C163
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB532%2C163
http://arxiv.org/abs/hep-th/9803167
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD64%2C086001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD64%2C086001
http://arxiv.org/abs/hep-th/0103220
http://jhep.sissa.it/stdsearch?paper=10%282001%29029
http://arxiv.org/abs/hep-th/0108075
http://jhep.sissa.it/stdsearch?paper=08%282005%29011
http://arxiv.org/abs/hep-th/0505099
http://jhep.sissa.it/stdsearch?paper=11%282005%29038
http://arxiv.org/abs/hep-th/0509132
http://jhep.sissa.it/stdsearch?paper=02%282003%29020
http://arxiv.org/abs/hep-th/0301099
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB580%2C243
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB580%2C243
http://arxiv.org/abs/hep-th/0002073
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD77%2C024004
http://arxiv.org/abs/0709.4262
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB195%2C481
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB544%2C316
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB544%2C316
http://arxiv.org/abs/hep-th/0205246
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C086002
http://arxiv.org/abs/hep-th/0205290
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB544%2C176
http://arxiv.org/abs/hep-th/0206223
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C22%2C4149
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C22%2C4149
http://arxiv.org/abs/hep-th/0502111
http://arxiv.org/abs/hep-th/0703220


J
H
E
P
0
5
(
2
0
0
8
)
0
6
9

[16] K. Copsey, Bubbles unbound II: AdS and the single bubble, JHEP 10 (2007) 095

[arXiv:0706.3677].

[17] D. Brill and H. Pfister, States of negative total energy in Kaluza-Klein theory, Phys. Lett. B

228 (1989) 359.

[18] D. Brill and G.T. Horowitz, Negative energy in string theory, Phys. Lett. B 262 (1991) 437.

[19] P.G. Freund and M.A. Rubin, Dynamics of dimensional reduction, Phys. Lett. B 97 (1980)

233.

[20] S. Hollands, A. Ishibashi and D. Marolf, Comparison between various notions of conserved

charges in asymptotically AdS-spacetimes, Class. and Quant. Grav. 22 (2005) 2881

[hep-th/0503045].

[21] K. Skenderis and M. Taylor, Kaluza-Klein holography, JHEP 05 (2006) 057

[hep-th/0603016]; Anatomy of bubbling solutions, JHEP 09 (2007) 019 [arXiv:0706.0216].

[22] K. Copsey and G.T. Horowitz, The role of dipole charges in black hole thermodynamics,

Phys. Rev. D 73 (2006) 024015 [hep-th/0505278].

[23] T. Regge and C. Tetelboim, Role of surface integrals in the Hamiltonian formulation of

general relativity, Ann. Phys. (NY) 88 (1974) 286.

[24] P. Breitenlohner and D.Z. Freedmann, Stability in gauged extended supergravity, Ann. Phys.

(NY) 144 (1982) 249; Positive energy in anti-de Sitter backgrounds and gauged extended

supergravity, Phys. Lett. B 115 (1982) 197.

[25] T. Hertog and K. Maeda, Black holes with scalar hair and asymptotics in N = 8 supergravity,

JHEP 07 (2004) 051 [hep-th/0404261].

[26] M. Henneaux, C. Martinez, R. Troncoso and J. Zanelli, Asymptotically anti-de Sitter

spacetimes and scalar fields with a logarithmic branch, Phys. Rev. D 70 (2004) 044034

[hep-th/0404236].

[27] T. Hertog and G.T. Horowitz, Designer gravity and field theory effective potentials, Phys.

Rev. Lett. 94 (2005) 221301 [hep-th/0412169].

[28] T. Hertog and S. Hollands, Stability in designer gravity, Class. and Quant. Grav. 22 (2005)

5323 [hep-th/0508181].

[29] A.J. Amsel and D. Marolf, Energy bounds in designer gravity, Phys. Rev. D 74 (2006)

064007 [Erratum ibid. D 75 (2007) 029901].

[30] M. Henneaux, C. Martinez, R. Troncoso and J. Zanelli, Asymptotic behavior and

Hamiltonian analysis of anti-de Sitter gravity coupled to scalar fields, Ann. Phys. (NY) 322

(2007) 824 [hep-th/0603185].

[31] A.J. Amsel, T. Hertog, S. Hollands and D. Marolf, A tale of two superpotentials: stability and

instability in designer gravity, Phys. Rev. D 75 (2007) 084008 [Erratum ibid. D 77 (2008)

049903] [hep-th/0701038].

[32] D. Sudarsky and R.M. Wald, Extrema of mass, stationarity, and staticity, and solutions to

the Einstein Yang-Mills equations, Phys. Rev. D 46 (1992) 1453;

R.M. Wald, The first law of black hole mechanics, gr-qc/9305022.

[33] R. Emparan and H.S. Reall, Black holes in higher dimensions, arXiv:0801.3471.

– 24 –

http://jhep.sissa.it/stdsearch?paper=10%282007%29095
http://arxiv.org/abs/0706.3677
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB228%2C359
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB228%2C359
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB262%2C437
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB97%2C233
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB97%2C233
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C22%2C2881
http://arxiv.org/abs/hep-th/0503045
http://jhep.sissa.it/stdsearch?paper=05%282006%29057
http://arxiv.org/abs/hep-th/0603016
http://jhep.sissa.it/stdsearch?paper=09%282007%29019
http://arxiv.org/abs/0706.0216
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C024015
http://arxiv.org/abs/hep-th/0505278
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C88%2C286
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C144%2C249
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C144%2C249
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB115%2C197
http://jhep.sissa.it/stdsearch?paper=07%282004%29051
http://arxiv.org/abs/hep-th/0404261
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C044034
http://arxiv.org/abs/hep-th/0404236
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C94%2C221301
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C94%2C221301
http://arxiv.org/abs/hep-th/0412169
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C22%2C5323
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C22%2C5323
http://arxiv.org/abs/hep-th/0508181
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C064007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C064007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C322%2C824
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C322%2C824
http://arxiv.org/abs/hep-th/0603185
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C084008
http://arxiv.org/abs/hep-th/0701038
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD46%2C1453
http://arxiv.org/abs/gr-qc/9305022
http://arxiv.org/abs/0801.3471


J
H
E
P
0
5
(
2
0
0
8
)
0
6
9

[34] A. Ashtekar and S. Das, Asymptotically anti-de Sitter space-times: conserved quantities,

Class. and Quant. Grav. 17 (2000) L17 [hep-th/9911230].

[35] O. Sarbach and L. Lehner, No naked singularities in homogeneous, spherically symmetric

bubble spacetimes?, Phys. Rev. D 69 (2004) 021901 [hep-th/0308116].

[36] I.R. Klebanov and A.A. Tseytlin, A non-supersymmetric large-N CFT from type 0 string

theory, JHEP 03 (1999) 015 [hep-th/9901101].

– 25 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C17%2CL17
http://arxiv.org/abs/hep-th/9911230
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C021901
http://arxiv.org/abs/hep-th/0308116
http://jhep.sissa.it/stdsearch?paper=03%281999%29015
http://arxiv.org/abs/hep-th/9901101

